

    
      
          
            
  
Welcome to mrsd’s documentation!

mrsd is a Python toolkit to generate MR sequence diagrams, available on PyPi [https://pypi.org/project/mrsd/]. To install from source, the only dependencies are Matplotlib [https://matplotlib.org/] and numpy [https://numpy.org/].

To get started, have a look at the tutorials (FLASH and multi-echo FLASH) and the examples [https://github.com/lamyj/mrsd/tree/master/examples]. Once familiar with the basic concepts, you can find more details in the API Documentation.

Rather use MATLAB than Python? mrisd [https://github.com/benoitberanger/mri_seq_diagram_matlab] is the answer!

[image: _images/flash1.png]






            

          

      

      

    

  

    
      
          
            
  
FLASH Tutorial

This example shows how to draw the sequence diagram of the 2D FLASH sequence, as show, in FLASH imaging. Rapid NMR imaging using low flip-angle pulses [https://doi.org/10.1016/0022-2364(86)90433-6], Haase et al., Journal of Magnetic Resonance, 67(2), pp. 258-266, 1986.

Start by creating two matplotlib objects, a figure and a plot [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html], then create an empty sequence diagram which will be drawn in the matplotlib plot. The second argument is a list of channels: horizontal time lines for the various sequence events. Channel names may contain math expression inside dollar characters: they will be interpreted according to LaTeX rules. Channel names are arbitrary, and carry no specific meaning.

import matplotlib.pyplot
import mrsd

figure, plot = matplotlib.pyplot.subplots(figsize=(4,4), tight_layout=True)
diagram = mrsd.Diagram(
    plot, ["RF", "$G_{slice}$", "$G_{phase}$", "$G_{readout}$", "Signal"])






[image: ../_images/empty.png]

Empty sequence diagram




Slice-selective Pulse

The 2D FLASH sequence starts with a slice-selective RF pulse, i.e. an RF pulse played concurrently with a gradient on the slice axis.

Within mrsd, everything that happens during a sequence (RF pulses, gradients, echoes, etc.) is called an event. Each event has a duration and a position in time, which can be specified by the begin, end or center of the event. This can be used to synchronize events: the RF pulse is centered on 0, and the slice-selection gradient is centered on the RF pulse.

We start by creating the RFPulse with a duration of 2 (time units are arbitrary), and an amplitude of 1 (amplitudes of events are normalized between -1 and 1). We then create the Gradient, with a flat-top centered on the pulse, and an amplitude of 0.5. Once created, those two objects are added (add()) to their respective channels.

pulse = mrsd.RFPulse(2, 1, center=0)
slice_selection = mrsd.Gradient(pulse.duration, 0.5, center=pulse.center)

diagram.add("RF", pulse)
diagram.add("$G_{slice}$", slice_selection)





It is also possible to directly add object to the diagram by calling the appropriate functions of the Diagram class: rf_pulse() and gradient().

pulse = diagram.rf_pulse("RF", 2, 1, center=0)
slice_selection = diagram.gradient(
    "$G_{slice}$", pulse.duration, 0.5, center=pulse.center)





Ramp times can be added to the gradients, using either the ramp parameter (symmetric ramp-up and ramp-down times), or both the ramp_up and ramp_down parameters (asymmetric gradients). These parameters can be used in both forms of gradient creation.

Since selective pulses are a common pattern, a convenience function (selective_pulse()) exists to create both objects:

pulse, slice_selection = diagram.selective_pulse(
    "RF", "$G_{slice}$", 2, gradient_amplitude=0.5, ramp=0.1, center=0)






[image: ../_images/pulse.png]

Slice-selective pulse



The envelope of RF-pulses can be tuned using the envelope parameter: it defaults to sinc, but box or gaussian can also be used. You can also use the convenience functions sinc_pulse(), hard_pulse(), and gaussian_pulse() of the Diagram objects.



Readout

The readout occurs at echo time, and comprises three events: the ADC being switched on and off, the Echo, and the readout gradient. As for the selective pulse, the objects can be created then added to the diagram. Note that the ADC object takes an extra parameter, ec: this is passed to matplotlib [https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html] and can be used to change the aspect of the drawn object (color, line style, transparency, etc.).

TE = 4
d_readout = 2

adc = mrsd.ADC(d_readout, center=TE, ec="0.5")
echo = mrsd.Echo(d_readout, 1, center=adc.center)
readout = mrsd.Gradient(d_readout, 1, ramp=0.1, center=adc.center)

diagram.add("Signal", adc)
diagram.add("Signal", echo)
diagram.add("$G_{readout}$", readout)





The readout events can also be added using functions from the Diagram class: adc() and mrsd.Diagram.echo().

adc = diagram.adc("Signal", d_readout, center=TE, ec="0.5")
echo = diagram.echo("Signal", d_readout, 1, center=adc.center)
readout = diagram.gradient(
    "$G_{readout}$", d_readout, 1, ramp=0.1, center=adc.center)





As for the selective pulse, the readout is a common pattern for which a convenience function (readout()) can create all three events.

adc, echo, readout = diagram.readout(
    "Signal", "$G_{readout}$", d_readout, ramp=0.1, center=TE,
    adc_kwargs={"ec": "0.5"})






[image: ../_images/readout.png]

Pulse and readout





Encoding Gradients

The phase-encoding gradient is displayed as overlayed gradient lobes to represent the different repetitions of the sequence: in mrsd, this is called a MultiGradient.

d_encoding = 1

phase_encoding = mrsd.MultiGradient(d_encoding, 1, 0.1, end=readout.begin)
diagram.add("$G_{phase}$", phase_encoding)





As for the other events, it can be directly added using a function from the Diagram class (multi_gradient()).

diagram.multi_gradient("$G_{phase}$", d_encoding, 1, 0.1, end=readout.begin)





The prephasing lobe of the readout gradient depends on the readout gradient itself: its area must be minus one-half that of the main readout lobe. Gradient events have an adapt() function which create a new gradient from an existing one and an area ratio.

readout_prephasing = readout.adapt(d_encoding, -0.5, 0.1, end=readout.begin)
diagram.add("$G_{readout}$", readout_prephasing)





Similarly, the slice-encoding gradient must be rewound.

diagram.add(
    "$G_{slice}$",
    slice_selection.adapt(d_encoding, -0.5, 0.1, end=readout.begin))






[image: ../_images/encoding.png]

Pulse, readout, and encoding gradients





Annotations and Copies

The sequence diagram can be supplemented with annotations for a better understanding of the sequence. Time intervals (interval()) can show the TE and TR.

TR = 10

diagram.interval(0, TE, -1.5, "TE")
diagram.interval(0, TR, -2.5, "TR")





Channel specific annotations (e.g. flip angles and direction of phase encoding) are added using annotate().

diagram.annotate("RF", 0.2, 1, r"$\alpha$")
diagram.annotate("$G_{phase}$", phase_encoding.end, 0.5, r"$\uparrow$")





Finally, we show the beginning of the next repetition by creating copies of the RF pulse and the slice-selection gradient and moving them by the value of TR (move()).

diagram.add("RF", copy.copy(pulse).move(TR))
diagram.add("$G_{slice}$", copy.copy(slice_selection).move(TR))
diagram.annotate("RF", TR+0.2, 1, r"$\alpha$")






[image: ../_images/flash.png]

Full diagram of the FLASH sequence







            

          

      

      

    

  

    
      
          
            
  
Multi-Echo FLASH Tutorial

This tutorial extends the FLASH Tutorial to show a more complex readout pattern with alternating polarities and how to add other matplotlib objects to a sequence diagram.

We will start from a simple diagram with only three channels, the RF pulses, the readout gradient and the echoes.

import copy

import matplotlib.pyplot
import mrsd
import numpy

figure, plot = matplotlib.pyplot.subplots(tight_layout=True)
diagram = mrsd.Diagram(plot, ["RF", "$G_{RO}$", "Echoes"])





We will then define sequence parameters, add the RF pulse and show the TR. Note that this diagram uses a rectangular pulse instead of a sinc one.

T2_star = 5
TE, TR = 4, 20
d_pulse, d_readout, d_ramp = 0.5, 1, 0.1
train_length = 10

pulse = diagram.hard_pulse("RF", d_pulse, 1, center=0)
diagram.add("RF", copy.copy(pulse).move(TR))
diagram.interval(0, TR, -1.5, "TR")





We then add the first echo, its readout gradient and the prephasing lobe of the readout gradient. In this example, we do not show the ADC to make the diagram more readable.

echo = diagram.echo("Echoes", d_readout, 1, center=TE)
readout = diagram.gradient("$G_{RO}$", d_readout, 1, d_ramp, center=echo.center)
diagram.add(
    "$G_{RO}$", readout.adapt(d_readout, -0.5, d_ramp, end=readout.begin))





This part is very similar to the FLASH Tutorial and yields the following diagram.


[image: ../_images/single_echo.png]

Single echo




Multiple Echoes

In this tutorial, the sequence uses bipolar readout gradients and echoes as close as possible with respect to the gradient ramps. This means that the beginning of a readout gradient is the end of a previous one, and that the center of each echo is located at the center of its corresponding gradient lobe. We also modulate the echo amplitudes with a \(T_2^*\) decay.

for echo in range(1, train_length):
    gradient_amplitude = (-1)**echo
    readout = diagram.gradient(
        "$G_{RO}$", d_readout, gradient_amplitude, ramp=d_ramp,
        begin=readout.end)
    
    elapsed = readout.center - TE
    echo_amplitude = numpy.exp(-elapsed/T2_star)
    diagram.echo("Echoes", d_readout, echo_amplitude, center=readout.center)






[image: ../_images/multiecho.png]

Multiple echoes





T₂* Decay

Finally, we show a continuous \(T_2^*\) decay curve overlayed on top of the echoes. This is achieved by calling the usual matplotlib functions of the plot object, with the curve beginning at the first echo located at TE and ending at the last echo, using the last readout object. The vertical position must set to the RF channel, which can be accessed using the y() function of the Diagram class.

xs = numpy.linspace(0, readout.end-TE, 100)
ys = numpy.exp(-xs/T2_star)
plot.plot(xs+TE, ys+diagram.y("Echoes"), color="C0", lw=1)
plot.text(TE+xs[len(xs)//2], 0.5, "$e^{-t/T_2^*}$", color="C0")






[image: ../_images/final.png]

Multiple echoes and overlayed T₂* decay







            

          

      

      

    

  

    
      
          
            
  
API Documentation


Contents:


	Diagram

	Events








            

          

      

      

    

  

    
      
          
            
  
Diagram


	
class mrsd.Diagram(plot, channels)

	MR sequence diagram


	Parameters:

	
	plot – an instance of matplotlib axes (plot, subplot, etc.)


	channels – sequence of channels names in the plot, from top to
bottom









	
add(channel, event)

	Add an event to the specified channel.






	
adc(channel, *args, **kwargs)

	Add an ADC event to the specified channel.






	
echo(channel, *args, **kwargs)

	Add an echo event to the specified channel.






	
gradient(channel, *args, **kwargs)

	Add a gradient event to the specified channel.






	
multi_gradient(channel, *args, **kwargs)

	Add a multi-gradient event to the specified channel.






	
rf_pulse(channel, *args, **kwargs)

	Add an RF pulse event to the specified channel.






	
gaussian_pulse(channel, *args, **kwargs)

	Add a hard RF pulse event to the specified channel.






	
hard_pulse(channel, *args, **kwargs)

	Add a hard RF pulse event to the specified channel.






	
sinc_pulse(channel, *args, **kwargs)

	Add a sinc RF pulse event to the specified channel.






	
readout(adc_channel, gradient_channel, duration, echo_amplitude=1, gradient_amplitude=1, ramp=0, ramp_up=None, ramp_down=None, begin=None, end=None, center=None, adc_kwargs=None, echo_kwargs=None, gradient_kwargs=None)

	Add a readout block (echo, ADC and gradient)


	Parameters:

	
	adc_channel – channel of the echo and ADC


	gradient_channel – channel of the gradient


	duration – duration of the echo, ADC, and gradient flat-top


	echo_amplitude – amplitude of the echo


	gradient_amplitude – amplitude of the gradient flat-top


	ramp,ramp_up,ramp_down – ramp durations of the gradient.
Use ramp for symmetric gradients, and both ramp_up and
ramp_down for asymmetric gradients


	begin,end,center – time of the begin, end, or center of the
echo/ADC. Only one must be specified.


	adc_kwargs – extra parameters for the ADC event (e.g. style)


	echo_kwargs – extra parameters for the echo event (e.g. style)


	gradient_kwargs – extra parameters for the gradient event
(e.g. style)













	
selective_pulse(pulse_channel, gradient_channel, duration, pulse_amplitude=1, gradient_amplitude=1, envelope=None, ramp=0, ramp_up=None, ramp_down=None, begin=None, end=None, center=None, pulse_kwargs=None, gradient_kwargs=None)

	Add a selective pulse block (pulse and gradient)


	Parameters:

	
	pulse_channel – channel of the RF pulse


	gradient_channel – channel of the gradient


	duration – duration of the pulse and gradient flat-top


	pulse_amplitude – amplitude of the RF pulse


	gradient_amplitude – amplitude of the gradient flat-top


	envelope – envelope of the pulse (default to sinc)


	ramp,ramp_up,ramp_down – ramp durations of the gradient.
Use ramp for symmetric gradients, and both ramp_up and
ramp_down for asymmetric gradients


	begin,end,center – time of the begin, end, or center of the
echo/ADC. Only one must be specified.


	pulse_kwargs – extra parameters for the pulse event (e.g.
style)


	gradient_kwargs – extra parameters for the gradient event
(e.g. style)













	
annotate(channel, x, y, text, **kwargs)

	Add an annotation


	Parameters:

	
	channel – channel to which the annotation is added


	x – time of the annotation


	y – relative position of the annotation in the channel


	text – text of the annotation


	kwargs – extra parameters passed to matplotlib.axes.Axes.text













	
interval(begin, end, y, label, color='k')

	Add a time interval annotation


	Parameters:

	
	begin,end – begin and end time of the interval


	y – vertical position of the annotation


	label – label of the annotation


	color – color of the annotation label













	
y(channel)

	Return the y coordinate of the center of a channnel.












            

          

      

      

    

  

    
      
          
            
  
Events


	
class mrsd.Event(duration, amplitude, begin=None, end=None, center=None, offset=None, **kwargs)

	Abstract sequence event


	Parameters:

	
	duration – total duration.


	amplitude – normalized amplitude between -1 and +1.


	begin,end,center – time of the begin, end, or center of the
event. Only one must be specified.


	offset – horizontal and vertical offset to position the event.


	kwargs – passed to matplotlib.patches.Patch









	
move(offset)

	Move on the time axis, return the object










ADC


	
class mrsd.ADC(duration, **kwargs)

	ADC/readout event, represented by a rectangle of amplitude 1.







Echo


	
class mrsd.Echo(duration, amplitude=1, **kwargs)

	Echo event, represented by an oscillating exponential.







Gradient


	
class mrsd.Gradient(flat_top, amplitude, ramp=0, **kwargs)

	Gradient event, represented by a trapezoid.


	Parameters:

	
	flat_top – duration of the gradient flat-top


	amplitude – amplitude of the gradient flat-top


	ramp,ramp_up,ramp_down – ramp durations of the gradient.
Use ramp for symmetric gradients, and both ramp_up and
ramp_down for asymmetric gradients









	
adapt(flat_top, area_factor, ramp=0, ramp_up=None, ramp_down=None, **kwargs)

	Return a gradient with an area equal to a factor of the current
gradient.











Multi-Gradient


	
class mrsd.MultiGradient(flat_top, amplitude, ramp=0, steps=5, **kwargs)

	Multiple gradient events (e.g. phase encoding), represented by nested
trapezoids.


	Parameters:

	
	flat_top – duration of the gradient flat-top


	amplitude – maximum amplitude of the gradient flat-top


	ramp,ramp_up,ramp_down – ramp durations of the gradient.
Use ramp for symmetric gradients, and both ramp_up and
ramp_down for asymmetric gradients


	steps – number of steps drawn between the maximum and minimum
amplitude














RF Pulse


	
class mrsd.RFPulse(duration, amplitude, envelope=<function sinc_envelope>, **kwargs)

	RF pulse event, represented by a user-defined envelope


	Parameters:

	
	duration – duration of the pulse


	amplitude – maximum amplitude


	envelope – sinc_envelope (default), box_envelope, or
gaussian_envelope


	lobes – number of lobes on each side of a sinc envelope (defaults
to 3)


	apodization – apodization of a sinc envelope (None (default),
“hann”, or “hamming”)


	sd – standard deviation of a Gaussian envelope (defaults to 0.3)


	points – number of points used to draw the envelope (defaults to
101)
















            

          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | E
 | G
 | H
 | I
 | M
 | R
 | S
 | Y
 


A


  	
      	adapt() (mrsd.Gradient method)


      	ADC (class in mrsd)


  

  	
      	adc() (mrsd.Diagram method)


      	add() (mrsd.Diagram method)


      	annotate() (mrsd.Diagram method)


  





D


  	
      	Diagram (class in mrsd)


  





E


  	
      	Echo (class in mrsd)


  

  	
      	echo() (mrsd.Diagram method)


      	Event (class in mrsd)


  





G


  	
      	gaussian_pulse() (mrsd.Diagram method)


  

  	
      	Gradient (class in mrsd)


      	gradient() (mrsd.Diagram method)


  





H


  	
      	hard_pulse() (mrsd.Diagram method)


  





I


  	
      	interval() (mrsd.Diagram method)


  





M


  	
      	move() (mrsd.Event method)


  

  	
      	multi_gradient() (mrsd.Diagram method)


      	MultiGradient (class in mrsd)


  





R


  	
      	readout() (mrsd.Diagram method)


  

  	
      	rf_pulse() (mrsd.Diagram method)


      	RFPulse (class in mrsd)


  





S


  	
      	selective_pulse() (mrsd.Diagram method)


  

  	
      	sinc_pulse() (mrsd.Diagram method)


  





Y


  	
      	y() (mrsd.Diagram method)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to mrsd’s documentation!
        


      


    
  

_images/encoding.png
RF

Gice

Gphase

Greadout

signal

%a[[ﬂ] (





_images/final.png
&&&&&






_static/file.png





_images/single_echo.png
RF

Gro

Echoes

TR





_images/empty.png
RF

Gice

Gphase

Greadout

signal





_static/minus.png





_static/plus.png





_images/multiecho.png
&&&&&






_images/pulse.png
RF

Gice

Gphase

Greadout

signal





_images/flash.png
RF

Gice

Gphase

Greadout

signal





_images/flash1.png
RF

Gice

Gphase

Greadout

signal





_images/readout.png
RF

Gice

Gphase

Greadout

signal






